Effect of Melafen on functional efficiency of mitochondrial membranes from sugar beet taproots


Mitochondria were isolated from sugar beet (Beta vulgaris L) taproots and incubated in the presence of low concentrations of Melafen (2 × 10−9 and 4 × 10−12 M). This treatment of mitochondrial membranes induced an appreciable decrease in microviscosity of superficial lipids in the lipid bilayer and a parallel increase in microviscosity of the deeply immersed lipid regions adjacent to membrane proteins. Melafen had no effect on fluorescence of lipid peroxidation products in membranes of freshly prepared mitochondria but declined this fluorescence to control values in artificially aged mitochondria. Melafen raised the maximum rates for oxidation of NAD-dependent substrates, elevated the efficiency of oxidative phosphorylation, and activated electron transport in the terminal (cytochrome oxidase) step of mitochondrial respiratory chain, which implies the activation of energy metabolism within the cell. The acceleration of electron transport through the terminal step of mitochondrial respiratory chain was apparently accompanied by retardation of lipid peroxidation, which prevented impairment of mitochondrial membranes under stress conditions. A proposal is put forward that some properties of Melafen are favorable for adaptogenesis because its effects on mitochondrial energy metabolism depended on the functional state of mitochondria.


5 Figures and Tables

Download Full PDF Version (Non-Commercial Use)